

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Chemistry

NUCLEAR CHEMISTRY:

PRESENTED BY

Mrs.T.GOMATHI

AP/CHEMISTRY

INTRODUCTION:

- **▶** Nuclear Chemistry:
- Nuclear Chemistry is sub discipline of chemistry. It is concerned with changes in the nucleus of atom. Nuclear changes are source of radioactivity & nuclear power.
- ► That's why nuclear chemistry is very important branch of chemistry.
- Atom of the element consists of three fundamental particles proton, electron and neutron which are called sub-atomic particles.

RADIOCHEMISTRY:

- Emission of subatomic particles or high-energy electromagnetic radiation by nuclei.
- ► Such atoms/isotopes said to be radioactive
- ▶ It is a spontaneous phenomena.
- ▶ We refer to these as radionuclide's.

RADIOCHEMISTRY:

- Emission of subatomic particles or high-energy electromagnetic radiation by nuclei.
- ► Such atoms/isotopes said to be radioactive
- ▶ It is a spontaneous phenomena.
- ▶ We refer to these as radionuclide's.

BETA DECAY:

- ▶ Lower ionizing power than alpha particle
- ▶ But higher penetration power
- ▶ Requires sheet of metal or thick piece of wood to arrest penetration
- More damage outside of body, but less in (alpha particle is opposite)

NUCLEAR FUSION:

- ► H-bonds utilize fusion (but needs high-temps to react because both positively charged).
- ► As does the sun: $2H + 3H \Rightarrow 4_2He + n$
- ▶ 10 x more energy/gram than fission
- ▶ Fusion would be a superior method of generating power
- ➤ The good news is that the products of the reaction are not radioactive
- The bad news is that in order to achieve fusion, the
 material must be in the plasma state at several million
 Kelvin's.

NUCLEAR FUSION:

- ► H-bonds utilize fusion (but needs high-temps to react because both positively charged).
- As does the sun: $2H + 3H \Rightarrow 4_2He + n$
- ▶ 10 x more energy/gram than fission
- ▶ Fusion would be a superior method of generating power
- ➤ The good news is that the products of the reaction are not radioactive
- The bad news is that in order to achieve fusion, the
 material must be in the plasma state at several million
 Kelvin's.

GAMMA RAY EMISSION:

- ▶ Electromagnetic radiation.
- ► High-energy photons
- ▶ No charge, no mass
- Usually emitted in conjunction with other radiation types
- ► Lowest ionizing power, highest penetrating power requires several inches lead shielding

APPLICATION OF NUCLEAR CHEMISTRY:

- Cancer Treatment Cancer cells are more susceptible to radiation bc they are fast growing. Thyroid cancer can be treated with Ir-192 or Co-60.
- ► Food Preservation Strawberries are exposed to Co-60. This kills most of the bacteria and mold on the food.

THANK YOU

http://www.trinitycollegenkl.edu.in/