
TRINITY COLLEGE FOR WOMEN

NAMAKKAL

Department of Computer Science

OBJECT ORIENTED ANALYSES

AND DESIGN

19PCSE07-ODD Semester

Presented by

S.BHUVANESWARI

Assistant Professor

Department of Computer Science

http://www.trinitycollegenkl.edu.in/

Thinking in Objects and UML - 1

Then too, there are sets of proven design solutions

to problems that are considered ‘best practices.’

Certain ‘groupings’ of classes with specific

responsibilities / interfaces.

These provide specific solutions to specific

problems.

Called Design Patterns

We will discuss (much later) these standard patterns

and how to apply them to develop solutions to

common design problems.

Objects and UML

Of course, design (solution to requirements) ‘assume’ a
robust requirements analysis has taken place.

Use Cases are often used to capture stories of requirements
and are often views as ‘constituting’ the functional
requirements, but NOT the software quality factors (non-
functional requirements).

Use Cases are not specifically designed to be object-
oriented, but rather are meant to capture how an
application will be used.

Many methods for capturing requirements.
We will concentrate on Use Cases (ahead).

Basic Terms: Iterative, Evolutionary, and Agile

1. Introduction

Iterative - the entire project will be composed of min-

projects and will iterate the same activities again and again

(but on different part of the project AND with different

emphases) until completion.

Evolutionary (or incremental) - the software grows by

increments (to be opposed to the traditional, and somewhat

old-fashioned, Waterfall model of software development).

Agile - we will use a light approach to software development

rather than a very rigid one (which may be needed for a

safety-critical system for example)

This kind of approach seems better at treating software

development as a problem solving activity; also the use of

objects makes it amenable.

Why the Unified Process:

The Unified Process is a popular iterative software

development process.

Iterative and evolutionary development involves

relatively early programming and testing of a partial

system, in repeated cycles.

It typically also means that development starts before

the exact software requirements have been specified

in detail;

Feedback (based on measurement) is used to clarify,

correct and improve the evolving specification:

This is in complete contrast to what we usually mean

by engineering!

We will be studying all of the topics Using

Topics and Skills

UML notation

Requirements

analysis

Principles and

guidelines

Patterns

Iterative

development with

an agile Unified

Process

OOA/D

The Rush to Code
Analysis: - investigate the problem and the requirements.

What is needed? Required functions? Investigate domain

objects.

Problem Domain

The Whats of a system.

Do the right thing (analysis)

Design:

Conceptual solution that meets requirements.

Not an implementation

E.g. Describe a database schema and software objects.

Avoid the CRUD activities and commonly understood

functionality.

The Solution Domain

The ‘Hows’ of the system

Do the thing right (design)

What is Object-Oriented Analysis and Design
OOA: we find and describe business objects or concepts in the problem domain

OOD: we define how these software objects collaborate to meet the

requirements.

Attributes and methods.

OOP: Implementation: we implement the design objects in, say, Java, C++, C#,

etc.

Object:

An object is a real-world element in an object–oriented environment that may

have a physical or a conceptual existence. Each object has −

Identity that distinguishes it from other objects in the system.

State that determines the characteristic properties of an object as well as the values

of the properties that the object holds.

Behavior that represents externally visible activities performed by an object in

terms of changes in its state.

Class:

A class represents a collection of objects having same characteristic properties that

exhibit common behavior

A set of attributes for the objects that are to be instantiated from the class.

A set of operations that portray the behavior of the objects of the class. Operations

are also referred as functions or methods.

Inheritance

Inheritance is the mechanism that permits new classes to be created out of existing

classes by extending and refining its capabilities. The existing classes are called the

base classes/parent classes/super-classes,

Types of Inheritance

Single Inheritance − A subclass derives from a single super-class.

Multiple Inheritance − A subclass derives from more than one super-classes.

Multilevel Inheritance − A subclass derives from a super-class which in turn is

derived from another class and so on.

Hierarchical Inheritance − A class has a number of subclasses each of which may

have subsequent subclasses, continuing for a number of levels, so as to form a tree

structure.

Hybrid Inheritance − A combination of multiple and multilevel inheritance so as to

form a lattice structure.

Polymorphism

Polymorphism is originally a Greek word that means the ability to take multiple

forms.

Encapsulation:Encapsulation is the process of binding both attributes and methods

together within a class.

Data Hiding:Typically, a class is designed such that its data (attributes) can be

accessed only by its class methods and insulated from direct outside access.

THANK YOU
http://www.trinitycollegenkl.edu.in/

