

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

Advanced Business Statistics 19PCM07-EVEN Semester

Presented by

DR.B.MOHANA

PRIYAA

Assistant Professor

Department of Mathematics

Probability Distribution:

It is a listing of the probabilities of all the possible outcomes that could occur if the experiment was done.

It can be described as:

- 1.A diagram (Probability tree)
- 2.A table
- 3.A mathematical formula.

Characteristics:

Probability distribution come in many shapes with different characteristics as defined by the mean, standard deviation, skewness & kurtosis.

Types of Probability Distribution:

Probability Distribution

Discrete PD

Binomial distribution

Poisson distribution

Continuous PD

Normal distribution

Discrete Probability Distribution:

Random variable can take only finite number of values.

Eg: No. Of heads in two tosses

Continuous Probability Distribution:

Random variable can take any value.

Eg: Height of students in the class.

Binomial Distribution:

The Binomial distribution that a value summarizes the number of trials will take one of two independent values under a given set of parameters.

Binomial distribution is a Discrete Probability Distribution which expresses the probability of one set of alternatives - success(P) & failure(q).

The Binomial distribution formula is calculated as $P(x:n,p) = nCx \times px(1-p)n-x.$ (Probability of r success in n trials)

n= no.of trials undertaken

x= no.of success desire

p= prob. of Success

q= prob. of failure

Poisson Distribution:

When there is a large number of trials, but a small probability of success, binomial calculation becomes impractical.

If λ = mean no.of occurrences of an event per unit interval of time/space, then probability that it will occur exactly 'x' times is given by

$$P(X=x) = (e-\lambda \lambda x)/x!$$

Where e is Napier constant

And e= 2.7182

Normal Distribution:

It is a Continuous Probability Distribution ie, random variable can take on any value within a given range. **Eg:** Height, weight, mark, etc.

Normal distribution also known as Gaussian distribution.

In normal distribution the mean is 0 & standard deviation is 1.

Normal distribution are symmetrical but not all symmetrical distribution are normal.

Mean = μ , Standard Deviation = σ

Only two parameters are considered: Mean &S.D.

- 1.Same mean, different S.D
- 2.Same S. D, Different mean
- 3. Different mean, different S.D.

Characteristics of Binomial Distribution:

- 1.Binomial distribution has two parameters n & p.
- 2. Mean of Binomial Distribution is np & variance of Binomial Distribution is npq.
 - 3. S. D of Binomial Distribution iVnpq.
 - 4. Mean is alwgreaterthan than the variance.

Characteristics of Poisson distribution:

- 1. The probability that an event occurs in a given time, distance area, volume is the same.
 - 2. Events in Poisson distribution are independent.
 - 3. The value of λ is always greaterthan 0.

Characteristics of Normal Distribution:

Normal distribution are symmetric, unimodal & asymptotic, & the mean, median & mode are all equal.

The curve is symmetric at the center.

Applications of Binomial Distribution:

- 1. This distribution is mainly applied in the problem concerning.
 - 2. Estimation of the reliability of the system.
 - 3. Radar detection.

Applications of Poisson Distribution:

It is used to test if a statement regarding a population parameters is correct.

Applications of Normal Distribution:

Used to determine the proportion of the values that fall within a specified number of standard deviation from the mean.

THANK YOU

http://www.trinitycollegenkl.edu.in/