TRINITY COLLEGE FOR WOMIEN

 NAMAKKAL Department of Mathematics
ALGEBRA

21PMA05-EVEN Semester

Presented by
Dr.P.SARANYA
HOD-UG, Assistant Professor
Department of Mathematics
http://www.trinitycollegenkl.edu.in/

INTRODUCTION

Counting principle is a powerful tool for deriving certain theorems in algebra. The process of counting the elements in two different ways and then comparing the two, yields the desired conclusions. We define a conjugacy relation in a group to derive the class equation of a finite group. As an application of this equation, we prove that cauchy's Theorem which asserts the existence of an element of order p in G whenever $p o(G)$, for a given prime p . The number of distinct conjugate classes of $S n$ is obtained as the number of partitions of n.

Cartesian Product

The Cartesian product A x B of two sets A and B is the $\operatorname{set}\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \varepsilon \mathrm{A}$, and $\mathrm{b} \varepsilon \mathrm{B}\}$.

Relation

A subset R of $\mathrm{A} \times \mathrm{A}$ is called a relation on A . If $(\mathrm{a}, \mathrm{b}) \varepsilon \mathrm{R}$, we write a ~ b .

Relation

A relation ~ on a set A is said to be an equivalence relation on A if for all a, b, c in A, a ~ a (reflexivity)
a ~ b implies b ~ a (symmetry)
$\mathrm{a} \sim \mathrm{b}$ and b ~cimply a ~c (transitivity)

Equivalence Relation

If \sim is an equivalence relation on A and $a \varepsilon A$, the equivalence class of a is the set

$$
C(a)=\{x: x \sim a\}
$$

Theorem

Any two equivalence classes on a set are disjoint or identical

Theorem

If ~ is an equivalence relation on a set A, then A is the union of its distinct equivalence classes

Definiton

Let G be a group and $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$. We say a is conjugate of b , if there exists an element $\mathrm{g} \varepsilon \mathrm{G}$ such that $\mathrm{a}=\mathrm{g}-1 \mathrm{bg}$. We write $\mathrm{a} \sim \mathrm{b}$.

Lemma

In a group G , the conjugacy relation is an equivalence relation.

Proof:

Reflexivity : Since $a=e{ }^{-1} a e$, where e is identity element of $G, a \sim a$.
Symmetry : If $\mathrm{a} \sim \mathrm{b}$, then there exists $\mathrm{x} \varepsilon \mathrm{G}$ such that $\mathrm{b}=\mathrm{x}^{-1} \mathrm{ax}$.
Then $(x-1)-^{1} b x-1=(x-1)-^{1}(x-1 a x) x-1$

$$
\text { i.e., } \begin{aligned}
\mathrm{xbx} \mathrm{x}^{-1} & =\mathrm{x}\left(\mathrm{x}^{-1} a \mathrm{ax}\right) \mathrm{x}-1 . \\
& =\left(\mathrm{xx}^{-1}\right) a\left(\mathrm{xx} \mathrm{x}^{-1}\right) . \\
& =a
\end{aligned}
$$

Therefore, $\mathrm{a}=\mathrm{x}$ bx-1
Therefore b ~ a

Transitivity : Let $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{b} \sim \mathrm{c}$.
Then
$b=x-^{1} a x$, for some x Î G and $c=y-1$ by, for some y εG.

$$
\begin{aligned}
c & =y^{-1}\left(x^{-1} a x\right) y \\
& =\left(y^{-1} x^{-1}\right) a(x y) \\
& =(x y)^{-1} a(x y)
\end{aligned}
$$

Therefore a ~ c
Therefore conjugacy is an equivalence relation.

Definition

If a belongs to the group G, the equivalence class of a under the conjugacy relation is $C(a)=\{x: x \sim a\}$. It is called the conjucate class of a. If G is a finite group, then the number of elements in $\mathrm{C}(\mathrm{a})$ is denoted by Ca .

Lemma

If a belongs to aroup G, then $N(a)=\{x \varepsilon G: x a=a x\}$ is a subgroup of G and is called normaliser of a.

THCNK YOU

http:/ /www.trinitycollegenkl.edu.in/

