

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS 19PMA11-ODD Semester

Presented by
B. Lena
Assistant Professor
Department of Mathematics
http://www.trinitycollegenkl.edu.in/

TYPES OF KERNELS

- (i) Symmetric Kernel
 - (ii) Separable or Degenerate Kernel
 - (ii) Transposed Kernel
 - (iv) Iterated Kernels
- (v) Resolvent Kernel or Reciprocal Kernel

(i) Symmetric Kernel:

A Kernel k(x,t) is symmetric (or complex symmetric or Hermition) if

$$k(x,t) = (k(x,t))^{-}$$

Where bar denotes the complex conjugate. A real kernel k(x,t) is symmetric if

$$k(x,t) = k(t,x)$$

Example:

Sin(x + t), e^xt, x^3 t^3+x^2 t^2+xt+1 are all symmetric kernels.

(ii) Separable or Degenerate Kernel

A kernel which is particularly useful in solving the

Fredholm equation has the form

$$k(x,t) = \sum_{i=1}^{n} [a_i(x) b_i] (t)$$

Where n is finite and a_i,b_i are linearly independent sets of functions. Such a kernel is called separable or degenerate kernel.

Note:

A degenerate kernel has a finite number of characteristic values.

(iii) Transposed Kernel:

The kernel $k^T(x,t) = k(x,t)$ is called the transposed kernel of k(x,t).

(iv) Iterated Kernels:

(a) Consider Fredholm integral equation of the second kind

$$u(x)=f(x)+\lambda \int_{a^{b}} k(x,t)u(t)dt \dots (1)$$

Then, the iterated kernels k_n (x,t), n=1,2,3,..... are defined as follows

```
k_1(x,t)=k(x,t)
and k_n(x,t)=\int_a^b [k(x,s)k_n-1)(s,t)] ds, n = 2,3,....
```

(b) Consider Volterra integral equation of the second kind

$$u(x)=f(x)+\lambda\int_{a}^{\infty}k(x,t)u(t)dt$$
 Then, the iterated kernels k_n (x,t),
$$n=1,2,3,\ldots...\text{ Are defined as follows}$$

$$k_1\ (x,t)=k(x,t)\text{ and}$$

$$k_n\ (x,t)=\int_{a}^{\infty}k(x,s)k_(n-1)\ (s,t)\ ds,$$

$$n=2,3,\ldots..$$

(v) Resolvent Kernel or Reciprocal Kernel:

Consider the integral equations

Let the solution of (1) and (2) be given by $u(x)=f(x)+\lambda\int_{-a}^{\infty}R(x,t;\lambda)f(t)dt \qquad and$

 $u(x)=f(x)+\lambda\int_a^x \Gamma(x,t;\lambda) f(t)dt$ Then, R(x,t;\lambda) or \Gamma(x,t;\lambda) is called the resolvent kernel or reciprocal kernel.

EIGEN VALUES AND EIGEN FUNCTION:

Consider the homogeneous Fredholm integral equation

$$u(x) = \lambda \int_a^b k(x,t) u(t)dt(1)$$

Then values of the parameter λ for which (1) has a non-zero solution [(u(x) \neq 0)] are called eigen values of (1) or of the kernel k(x,t), and every non-zero solution of (1) is called an eigen function corresponding to the eigen value λ .

Remarks:

- (1)The eigen values are also known as characteristic values or characteristic numbers.
- (2)Eigen functions are also known as characteristic function or fundamental functions.
- (3)The number λ =0 is not an eigen value, since for λ =0, it follows from (1) that u(x) = 0.
- (4)If u(x) is an eigen function of (1), then C.u(x), where C is an arbitrary constant, is also an eigen function of (1), which corresponds to the same eigen value λ.

THANK YOU

http://www.trinitycollegenkl.edu.in/