

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

CLASSICAL ALGEBRA

19UMA01-ODD Semester

Presented by

Dr B. Mohana priyaa

Assistant Professor

Department of Mathematics

http://www.trinitycollegenkl.edu.in/

MATRICES

Matrices: test for consistency of linear equation- characteristic equations-characteristic roots and characteristic vectors of a matrix-cayley-hamilton theorem-similarity of matrices-diagonalizable matrices-problems.

CHARACTERISTIC EQUATION OF A MATRIX

Let A be a $n \times n$ matrix over a field F and I be the unit matrix of the same order. Let I be the unknown. Then determinant $A_{\lambda}I$ is called the characteristic polynomial of the matrix A

The eqn $|A_{\lambda I}| = 0$ is called the characteristic eqn of the matrix.

The another name of characteristic root is latent root or eigen values.

PACTERISTIC VECTORS OF A

 n^*n matrix. Let x be any non-zero column vector.

 $\chi = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

They any solution of the equation $AX=\lambda X$ other the X=0 corresponding to some particular value of λ is called a characteristic vector or latent or eigen vector.

EXAMPLE:

Show that the two matrix A and 1/P(AP) have the same characteristic roots.

Solution.

let
$$B=1/P(AP)$$

 $B-\lambda I = 1/P(AP)-\lambda I$
 $=A-\lambda I$
 $\begin{vmatrix} B-\lambda I \end{vmatrix} = \begin{vmatrix} A-\lambda I \end{vmatrix}$
 $\begin{vmatrix} B-\lambda I \end{vmatrix} = 0$; $\begin{vmatrix} A-\lambda I \end{vmatrix} = 0$

The characteristic roots of A and B are the same.

CAYLEY-HAMILTON THEOREM

Every square matrix satisfies its own characteristic eqn. ie, if the characteristic polynomiap is

$$\begin{split} & \Phi(\lambda) \!\!=\!\! \lambda^n \!\!+\! P_1 \lambda^{n\text{-}1} \!\!+\! P_2 \lambda^{n\text{-}2} +\! P_{n\text{-}1} \lambda \!\!+\! P_n \\ & \Phi(A) \!\!=\!\! 0 \\ & A^n \!\!+\! P_1 A^{n\text{-}2} \!\!+\! ... \!\!+\! P_{n\text{-}1} A \!\!+\! P_n I \!\!=\!\! 0 \end{split}$$

DIAGONALIZABLE

A matrix A is said to diagonalizable if it is similar to a diagonalizable matrix. Then there exist a non singular matrix ρ such that $\rho^{-1}A\rho=D$

where D is a diagonal matrix

TEST FOR CONSISTENCY OF LINEAR EQUATION WORKING RULE:

Write the given system of equation in the form AK=B.

Find the matrix [A,B] of the given system.

Find the rank of A and the rank of [A,B] by applying the elementary row operation only.

Don't use elementary column operation.

The following three cases gives the answer

- 1. If $\rho(A)=\rho[A,B]=$ no. of variables, then the system is consistent and has unique solution.
- 2. If $\rho(A)=\rho[A,B]< n$, then the system is consistent and has infinite number of solution.
- 3. If $\rho(A)\neq \rho[A,B]$, then the system is in consistent and there is no solution for the system of the equation.

RANK OF THE MATRIX:

- *A process atleast minor of order r which doesn't vanish.
- \Rightarrow The number of r is said to be the rank of the matrix A.
- \clubsuit Every minor of A of order r+1 and higher order vanish.
- \Rightarrow The rank of matrix of A is denoted by $\rho(A)$.
- \Rightarrow If I is the unit matrix of order n its rank is n.
- The rank of null matrix is taken as 0

MINOR OF THE

We know that every square matrix has a determinant. If A is m×n matrix then the determinant of every square sub matrix of A is called a minor of matrix A.

Consider the matrix

This is the matrix of
$$\begin{bmatrix} 1 & 3 & 5 & 4 \\ 6 & 1 & 2 & 7 \\ 7 & 5 & 4 & 3 \end{bmatrix}$$
 en

is a square sub matrix of order 3.

Find is a square sub matrix of order 2.

$$\begin{bmatrix} 2 & 7 \\ 4 & 3 \end{bmatrix}$$

THANK

VAII

http://www.trinitycollegenkl.edu.in/