

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Physics

COMPUTATIONAL METHODS 19PPH08-ODD Semester

Presented by

Dr.R.Sakunthaladevi

Assistant Professor

Department of Physics

http://www.trinitycollegenkl.edu.in/

Curve Fitting – Fitting a straight line											
• The straight line equation $y = f(x) = ax+b$				By Least squares							
• The normal equations are, $a \sum x^2 + b$	$b\sum x = \sum$	∑xy a	and a	$\sum x + n$	$b = \sum y$	y					
• Example: Fit a straight line to the following data											
	X	0	5	10	15	20	25				
Solution:	V	12	15	17	22	24	30				
Let the equation of straight line to best fit be											
v=ax+b											
The Normal equation are	Х		У	Х	y	x	2				
$\mathbf{a}\Sigma \mathbf{x} + \mathbf{n}\mathbf{b} = \Sigma \mathbf{y}$	0		12	(0	С)				
$\mathbf{a} \sum x^2 + \mathbf{b} \sum \mathbf{x} = \sum \mathbf{x} \mathbf{y}$	5		15	,	75	2	5				
Substitute the values in normal equations	5 10		17	1	70	1()()				
75a+6b=120	10		1/	L	10	1					
1375a+75b=1805	15		22	3	30	22	.5				
Solve the equations, we get	20		24	43	80	40	0				
a=0.697	25		30	750		625					
b=11.287	-75	$\sum v^{-}$	-120	$\nabla \mathbf{v} \mathbf{v}$	-1805	$\nabla x^2 - 1$	275				
Therefore the straight line equation is 2		_y-	120	Длу-	-1605	$\sum x = 1$	575				
Y=0.697x +11.237											

Interpolation for equal intervals

• Linear interpolation : $f(x)=f(x_1)+(x-x_1)$. $\frac{f(x_2)-f(x_1)}{x_2-x_1}$

Example: The table below gives square roots for integers determine the square root of 2.5.

X	1	2	3	4	5
f(x)	1	1.4142	1.7321	2	2.2361

Solution

The given value of 2.5 lies between the points 2 and 3 in the given values. Therefore we are using linear interpolation formula $f(x)=f(x_1)+(x-x_1)$. $\frac{f(x_2)-f(x_1)}{x_2-x_1}$ where,

x=2.5, x1=2, f(x1)=1.4142, x2=3, f(x2)=1.7321

$$f(2.5) = 1.4142 + (2.5-2) \frac{1.7321 - 1.4142}{3-2}$$
$$f(2.5) = 1.5731$$

Truncation error

Example:Find the truncation error in the result of the following function for $x = \frac{1}{5}$, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!}$, when we use first four terms.

Solution Given $x = \frac{1}{5} = 0.5$

We take first four terms for calculation therefore the remining two is the value of error. Therefore

Truncation error for first four terms = $\frac{x^4}{4!} + \frac{x^5}{5!}$

$$= \frac{\frac{1}{4!}}{\frac{4!}{5!}} + \frac{\frac{1}{5!}}{\frac{0.5^{4}}{4!}} + \frac{0.5^{5}}{5!}$$

 $= 0.694222 \times 10^{-4}$

Newton-Raphson method

Roots of nonlinear equations

• Newton-Raphson method $f(x_{n+1}) = x_n - \frac{f(x_n)}{f'(x_n)}$

Example: Find the root of the equation $f(x) = x^2 - 3x + 2$ in the vicinity of x = 0 by using Newton-Raphson method.

Solution

Newton-Raphson method $f(x_{n+1}) = x_n - \frac{f(x_n)}{f'(x_n)}$

Given :

For first approximation $x_0 = 0$, $f(x) = x^2 - 3x + 2$, f'(x) = 2x-3

$$f(x_1) = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{x_0^2 - 3x_0 + 2}{(2x_0 - 3)} = -\frac{2}{-3} = \frac{2}{3} = 0.6667$$

Similarly in second approximation $x_1 = 0.6667$, $f(x) = x^2 - 3x + 2$, f'(x) = 2x-3 $f(x_1) = x_0 - \frac{f(x_1)}{f'(x_1)} = 0.6667 - \frac{0.4444}{-1.6667} = 0.9333$

Continue the approximation, we get the answer 1.0 for sixth and seventh approximation. Therefore the root close to the point at x = 0 is 1.0

Simpson's 3/8 Rule

Numerical Integration

• Simpson's 3/8 rule $\int_{x_0}^{x_n} f(x) dx = \frac{3h}{8} [f(a) + f(b) + 3f(x_1) + 3f(x_2)]$

Example: Evaluate the following intervals using Simpson's 3/8 rule: $\int_{1}^{2} (x^{3} + 1) dx$

Solution: Simpson's 3/8 rule $\int_{x_0}^{x_n} f(x) dx = \frac{3h}{8} [f(a) + f(b) + 3f(x_1) + 3f(x_2)]$ Given: $a = 1, b = 2, f(x_1) = f(a + h), f(x_2) = f(a + 2h), h = \frac{b-a}{2} = 0.5$ $\int_{1}^{2} (x^3 + 1) dx = \frac{3(0.5)}{8} [f(1) + f(2) + 3f(1 + 1) + 3f(x_2)]$ = 0.1875 [2 + 9 + 3.375 + 27] $\int_{1}^{2} (x^3 + 1) dx = 7.7578$

Two Point formula

Numerical Differentiation - first order

0.2

0.1

First order forward difference two point formula $f'(x) = \frac{f(x+h) - f(x)}{h}$

Example: estimate approximate derivative of $f(x) = x^2$ at x=1 for h=0.2 and 0.1 using first order forward difference formula and compare with the exact answer. **Solution:**

First order forward difference two point formula $f'(x) = \frac{f(x+h) - f(x)}{h}$ **Given:** $f(x) = x^2$ at x=1 for

i) If h= 0.2

$$f'(1) = \frac{f(1+0.2)-f(1)}{0.2} = \frac{f(1.2)-f(1)}{0.2} = \frac{1.2^2 - 1^2}{0.2} = 2.2$$
ii) If h= 0.1

$$f'(1) = \frac{f(1+0.1)-f(1)}{0.1} = \frac{f(1.1)-f(1)}{0.1} = \frac{1.1^2 - 1^2}{0.1} = 2.1$$
III) Exact answer

$$f(x) = x^2$$

$$f'(x) = 2x = 2 X 1 = 2$$

$$h = f'(x) = x^2$$

$$h = 2 X = 2 X = 2$$

$$h = 2 X = 2 X = 2$$

Euler's Method

Numerical Solution to ordinary differential equations

• The Euler's formula $y_{n+1} = y_n + f h(x_n, y_n)$

Example: Given the equation $\frac{dy}{dx} = 3x^2 + 1$ with y(1) = 2 estimate y(2) by Euler's method using h=0.5.

Solution:

The Euler's formula $y_{n+1} = y_n + fh(x_n, y_n)$ Given: y(1) = 2, $f(x) = = 3x^2 + 1$, $x_0 = 1$, $y_0 = 2$, h = 0.5 $y_1(0.5) = y_0 + 0.5 f(x_0, y_0)$ $= 2 + 0.5 (3x_0^2 + 1)$ = 2 + 0.5 (4) $y_1(0.5) = 4$ and $x_1 = 1.5$

 $y_2(1.0) = y_1 + 0.5 f(x_1, y_1)$ = 4 + 0.5 (3x_1^2 + 1) = 4 + 0.5 (7.75) $y_2(1.0) = 7.875, x_1 = 2$

Gauss Elimination Method

Solution of Linear equations

Example: Using Gauss Jordan method and solve the following linear equations 5x + 4y = 15 and 3x + 7y = 12

Solution:

Write the equations in augmented matrix form

$$\begin{pmatrix} 5 & 4 & 15 \\ 3 & 7 & 12 \end{pmatrix}$$

Change the element I first row and first column as one

 $-\begin{pmatrix} 1 & 4/5 & 3 \\ 3 & 7 & 12 \end{pmatrix} R_1 \qquad R_1/5$ Make all the other components in the first column equal to zero $\begin{pmatrix} 1 & 4/5 & 3 \\ 0 & 7 - \frac{3 \times 4}{5} & 12 - 3 \times 3 \end{pmatrix} R_2 \qquad R_2 - 3R_1; \quad \begin{pmatrix} 1 & 4/5 & 3 \\ 0 & 23/5 & 3 \end{pmatrix}$ Make the element in the second row and second column as one $\begin{pmatrix} 1 & 4/5 & 3 \\ 0 & 1 & \frac{15}{23} \end{pmatrix} R_2 \qquad R_2/\frac{23}{5} \qquad \longrightarrow$ By using back substitution method $y = \frac{15}{22} = 0.6522 \text{ and } x + \frac{4}{5}y = 3; x = 3 - \frac{4}{5}(0.6522)$

v = 0.6522

x = 2.4782 and

THANK YOU

http://www.trinitycollegenkl.edu.in/