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We have seen in the first lecture that the complex
derivative of a function f at a point z0 is defined as the
limit f 0 (z0) = lim h→0 f(z0 + h) − f(z0) h , whenever the
limit exist. We have also seen two examples i) if f(z) = z2

then f 0 (z) = 2z, ii) the function f(z) = z is not a
differentiable function. Now we will go for a detail study.
Theorem 1. If f is differentiable at z0 then f is continuous
at z0.

Proof. Since f’(z0) = limz→z0 f(z)−f(z0)/ z−z0 it follows that 

Limz→z0 f(z) = lim z→z0 f(z) − f(z0)/ z − z0 (z − z0) + f(z0) = f(z0). 

COMPLEX DIFFERENTIATION AND CAUCHY RIEMANN 
EQUATIONS



The following results about derivatives follow
exactly as in the case of reals:

(1) Derivative of a constant function is zero and d/
dz (zn ) = nzn−1 , n ∈ N.

(2) If α, β ∈ C then (αf + βg)’= αf’+ βg’ .
(3) (Chain Rule) d/dz f(g(z)) = f’(g(z))g’(z) whenever

all the terms make sense. So much for
similarity. To see the difference of complex
derivatives and the derivatives of functions of
two real variables we look at the following
example.



Example 2. Consider the function f : C → R given by f(z) = |z|2.

Since z = x + iy the function f can also be thought of as a function

from R2 to R. From this point of view the function f can also be

written as f(x, y) = x2 + y2 . Since the partial derivatives of f are

continuous throughout R2 it follows that f is differentiable

everywhere on R2. But what happens if we now view f as a

function on C and think about complex differentiability? it is

clear that f is differentiable at zero as

limh→0|h|2/h=lim(h1,h2)→(0,0)h
2
1+h2

2/h1+ih2= lim(h1,h2)→(0,0) h2
1+ h2

2

/h2
1+h2

2 (h1 − ih2) = 0

(we have used the important fact that |z|2 = zz). On the other hand

limh→0 |z+h|2−|z|2/h = limh→0 zh¯+¯zh/h does not exist for z ≠ 0 as

limh→0 h/h does not exist.



So we need to find a necessary condition for differentiability of a
function of a complex variable z. These are called Cauchy-
Riemann equations (CR equation for short) given in the following
theorem. We need the following notation to express the theorem
which deals with the real part and imaginary part of a function of a
complex variable. Let f : C → C be a function then
f(z) = f(x, y) = u(x, y) + iv(x, y). The functions u and v can be thought
of as real valued functions defined on subsets of R2 and are called
real and imaginary part of f respectively (u=Re f, v=Im f).
Theorem 3. Suppose that f(z) = f(x + iy) = u(x, y) + iv(x, y) is
differentiable at z0 = x0 + iy0. Then the partial derivatives of u and v
exist at the point z0 = (x0, y0) and f’(z0) = ux(x0, y0) + ivx(x0, y0) =
vy(x0, y0) − iuy(x0, y0). Thus equating the real and imaginary parts
we get
ux = vy, uy = −vx, at z0 = x0 + iy0 (Cauchy Riemann equations).



Proof. Since f is differentiable at z0 we have by varying h over the
set of real numbers
f’(z0) = f’(x0 + iy0) = limh→0 u(x0 + h, y0) − u(x0, y0) + i[v(x0 + h, y0) −
v(x0, y0] h
= ux(x0, y0) + ivx(x0, y0), and
f’(z0) = f’(x0 + iy0)
= limh→0 u(x0, y0 + h) − u(x0, y0) + i[v(x0, y0 + h) − v(x0, y0)] ih
= limh→0 v(x0, y0 + h) − v(x0, y0) h − i limh→0 u(x0, y0 + h) − u(x0, y0)
h (as 1 i = −i)
= vy(x0, y0) − iuy(x0, y0).

Now we can just compare the real and imaginary parts of f 0 (z0). This
completes the proof. Note that the crux of the proof is to approach the point
(0, 0) through real axis (X-axis) and through imaginary axis (Y-axis) (it is the
same way we have shown that the function f(z) = z is not differentiable). Now,
CR equations has some magical consequences, some of which is mentioned
below.



(1) If f : C → C is such that f 0 (z) = 0 for all z ∈ C, then f is a
constant function. This is because, by CR equation ux =
uy = vx = vy = 0. So by MVT of two variable calculus u and
v are constant function and hence so is f.

(2) If f : C → C is differentiable everywhere and f(z) is real
for all z ∈ C then f is a constant function. This follows
from CR equation as v(x, y) = 0 for all x + iy ∈ C and
hence all partial derivatives of v is also zero and hence
the same is true for u. Thus the function f(z) =|z|2 is not
differentiable for z ≠0.

(3) However CR equations do not give a sufficient criteria
for differentiability.



Example 4. Let f(z) = z2/z, if z≠ 0 and f(0) = 0. It is easy to see
that this function is not differentiable at 0. By definition
limh→0 f(h) − f(0)/h = limh→0 (h¯)2 /h2 . Now by choosing h to
be real we get the limit to be 1 and replacing h by h + ih we
see that the limit is −1. But real and imaginary parts of f
satisfies CR equations at z = 0 (check this!). If we add some
more conditions on the partial derivatives of u and v along
with CR equations then one can conclude that the function is
differentiable. We state a theorem (without the proof) for
the precise statement.
Theorem 5. (Converse of CR relations) f = u + iv be defined on
Br(z0) such that ux, uy, vx, vy exist on Br(z0) and are continuous
at z0. If u and v satisfies CR equations then f’(z0) exist and f’=
ux + ivx.



As in the cartesian case, it can be proved that if ur, uθ, vr,
vθ are continuous and satisfies CR equations then the
function is differentiable.

Example 6. Using the above result we can immediately check
that the functions
(1) f(x + iy) = x 3 − 3xy2 + i(3x2y − y3 )
(2) f(x + iy) = e−y cos x + ie−y sin x
are differentiable everywhere in the complex plane. CR

equations can also be expressed in the polar coordinates.
Exercise: Using x = r cos θ, y = r sin θ and the chain rule
∂u/∂r = ∂u/∂x ∂x/∂r + ∂u/∂y ∂y/∂r prove that the CR
equation is equivalent to ur = 1/r vθ, vr = − 1/r uθ.



THANK YOU
http://www.trinitycollegenkl.edu.in/


