TRINITY COLLEGE FOR WOMIEN

 NAMAKKAL Department of Mathematics NUMERICAL ANALYSIS 21PMAE03-EVEN SemesterPresented by
Dr.B.MOHANA PRIYAA
Assistant Professor
Department of Mathematics http://www.trinitycollegenkl.edu.in/
consider the first order differential equations

$$
\frac{d y}{d x}=f(x, y)
$$

subject to $y(x o)=y o$
The equation can be written as

$$
d y=f(x, y) d x
$$

Intergating between the limits

$$
\begin{aligned}
& \int_{y o}^{y} d y=\int_{x_{0}}^{x} f(x, y) \mathrm{dx} \\
& \mathrm{Y}=y_{0}+\int_{x_{0}}^{x} f(x, y) \mathrm{dx}
\end{aligned}
$$

FIRST APPROXIMATIONS,

$$
y_{1}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}\right) \mathrm{dx}
$$

SECOND APPROXIMATIONS,

$$
Y_{2}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}\right) \mathrm{d} x
$$

nth approximations,

$$
y_{n}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) \mathrm{dx}
$$

$$
\begin{aligned}
& \text { Let } \frac{d y}{d x}=f(x, y, z) \text { and } \\
& \frac{d y}{d x}=\varphi(x, y, z) \text { be the simultaneous }
\end{aligned}
$$ differential

Equation with intial conditions $y(x 0)$ and $z(x 0)=z_{0}$

$$
\begin{aligned}
& y_{1}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}, z_{0}\right) \mathrm{dx} \\
& z_{1}=z_{0}+\int_{x_{0}}^{x} \oint f\left(x, y_{0}, z_{0}\right) \mathrm{dx}
\end{aligned}
$$

consider the second order differential equation

$$
d^{2} \mathrm{y} / d^{2} \mathrm{x}=\mathrm{f}\left(\mathrm{x}, \mathrm{y}, \frac{d y}{d x}\right)
$$

by $\frac{d y}{d x}=z$ it can be reduced to two first
order simulataneous differential equations

$$
\frac{d y}{d x}=\mathrm{z} \text { and } \frac{d z}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

consider the differential equation

$$
\begin{array}{r}
\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y}) \\
\text { where } \mathrm{y}\left(x_{0}\right)=y_{0}
\end{array}
$$

To find successively $y_{1}, y_{2}, \ldots . y_{m}$. where y_{m} is the value of y corresponding to $\mathrm{x}=x_{m}$, $x_{m}=x_{0}+m h, m=1,2, \ldots h$.

The equation of tangent at ($x_{0,} y_{0}$)

$$
\mathrm{y}=y_{0}+\left(\mathrm{x}-x_{0}\right) \mathrm{f}\left(x_{0}, y_{0}\right)
$$

In general,

$$
y_{m+1}=y_{m}+h f\left(\lambda_{m}, y_{m}\right)
$$

The modified version of a well known variant of euler method known as the improved euler method

The quation of the coordinates $x 1, y 1$ is,

$$
y_{1}=y_{0}+\frac{h}{2}\left\{f\left(x_{0}, y_{0}\right)+f\left(x_{0}+h, y_{0}+\right.\right.
$$

$\left.h f\left(x_{0}, y_{0}\right)\right\}$
In we have the formula,

$$
\begin{gathered}
y_{m+1}=y_{m}+\frac{h}{2}\left\{f\left(x_{m}, y_{m}\right)+f\left(x_{m}+h, y_{m}\right.\right. \\
\left.h f\left(x_{m}, y_{m}\right)\right\}
\end{gathered}
$$

To improve the estimate of the slope ,determine two dervatives for the interval :
(1)At the initial point.
(2)At the end point.

The two dervitavies are then averaged to obtain an improved estimate of the slope for the entire interval.

$$
y_{1}=y_{0}+\left(x-x_{0}\right)\left\{\left\{x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right\}\right.
$$

$$
=y_{0}+h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right.
$$

preceeding in this way,

$$
y_{m+1}=y_{m}+h f\left(x_{m}+\frac{h}{2}, y_{m}+\frac{h}{2} f\left(x_{m}, y_{m}\right)\right.
$$

THANK YOU

http:/ /www.trinitycollegenkl.edu.in /

