

TRINITY COLLEGE FOR WOMEN NAMAKKAL **Department of Mathematics** PARTIAL DIFFERENTIAL **EQUATIONS** (Part-II) **19PMA08-ODD Semester Presented by** Dr.R.MALARVIZHI Assistant Professor & HOD-PG, **Department of Mathematics** http://www.trinitycollegenkl.edu.in/

Explain canonical forms of Elliptic, Hyperbolic, and Parbolic :

Reduce the PDE

 $R_r + S_s + T_t + f(x,y,z,p,q) = 0$ ------ (1) to a canonical form we apply the transformation.

 $\xi = \xi (x,y)$, $\eta = \eta (x,y)$ ------ (2)

such that, the function ξ and η are continuously differentiable and the jacobian

$$J = \frac{\partial (\xi, \eta)}{\partial (x, y)} = \begin{vmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{vmatrix} = \xi_x \eta_y - \eta_x \xi_y \neq 0 \quad \dots \quad (3)$$

in the domain ' Ω ', where equation (1) holds, Now we have,
$$P = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial z}{\partial \eta} \cdot \frac{\partial \eta}{\partial x}$$

 $\mathbf{P} = \mathbf{Z}_{\boldsymbol{\xi}} \cdot \boldsymbol{\xi}_{\mathbf{x}} + \mathbf{Z}_{\boldsymbol{\eta}} \cdot \boldsymbol{\eta}_{\mathbf{x}}$ $\mathbf{p} = \xi \mathbf{x} \cdot \mathbf{Z} \xi + \eta_{\mathbf{x}} + \mathbf{Z}_n$ $\mathbf{q} = \boldsymbol{\xi}_{\mathrm{y}_{\mathrm{o}}} \mathbf{Z}_{\boldsymbol{\xi}} + \boldsymbol{\eta}_{\mathrm{y}} + \mathbf{Z}\boldsymbol{\eta}$ $\mathbf{r} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right)$ $\mathbf{r} = \frac{\partial}{\partial r} \left(\xi_{\mathrm{x}} \cdot \mathbf{Z}_{\xi} + \eta_{\mathrm{x}} \cdot \mathbf{Z}_{\eta} \right)^{T}$ $\mathbf{r} = \frac{\partial}{\partial \xi} \left[\xi_{x} \cdot Z_{\xi} + \eta_{x} \cdot Z_{\eta} \right] \frac{\partial \xi}{\partial \xi} + \frac{\partial}{\partial \xi} \left[\xi_{x} \cdot Z_{\xi} + \eta_{x} \cdot Z_{\eta} \right] \frac{\partial \eta}{\partial x}$ $\mathbf{r} = \xi_x^2 \mathbf{Z}_{\boldsymbol{\xi}\boldsymbol{\xi}} + \xi_{xx} \mathbf{Z}_{\boldsymbol{\xi}} + 2 \xi_x^{\partial x} \mathbf{\eta}_x \mathbf{Z}_{\boldsymbol{\eta}\boldsymbol{\xi}} + \eta_{xx} \mathbf{Z}_{\boldsymbol{\eta}} + \eta_x^2 \mathbf{Z}_{\boldsymbol{\eta}\boldsymbol{\eta}}$ Simlarly,

 $t = \xi_{y}^{2} Z_{\xi\xi} + \xi_{yy} Z_{\xi} + 2 \xi_{y} \eta_{y} Z_{\eta\xi} + \eta_{yy}^{2} Z_{\eta} + \eta_{y}^{2} Z_{\eta\eta}$ $s = \xi_{x} \xi_{x} Z_{\xi\xi} + \eta_{x} \eta_{y} Z_{\eta\eta} + \xi_{x} \eta_{y} Z_{\eta\xi} + \xi_{y} \eta_{x} Z_{\eta\xi} + \xi_{x} \eta_{y} Z_{\xi} + \eta_{x} \eta_{y} Z_{\eta}$ Substitute these values of p,q,r,s,t in (1) we get $A(\xi_{x}, \xi_{y}) Z_{\xi\xi} + 2B(\xi_{x}, \xi_{x}, \eta_{x}, \eta_{y}) Z_{\eta\xi} + A(\eta_{x}, \eta_{y}) Z_{\eta\eta}$ $+ F(\xi, \eta, Z, Z_{\xi}, Z_{\eta}) = 0 \quad ----- \quad (4)$ Where,

 $A(U,V) = Ru^2 + Suv + Tv^2$

2B (u_1 , u_2 , v_1 , v_2) = 2R u_1u_2 + S(u_1v_2 + u_2v_1) + 2T v_1v_2 Now it can be easily verified that, 2B²(ξ_x , ξ_y , η_x , η_y) - A(ξ_x , ξ_y) A(η_x , η_y) = (S² - 4RT) J ----- (5) where J is given by (3) Case (i): S² - 4RT > 0

Under the condition $S^2 - 4RT > 0$, the equation $R\lambda^2 + S\lambda + T = 0$ has real and distinct roots.

Let these roots be λ_1 and λ_2

We choose $\,\xi\,\,and\,\eta\,\,such\,\,that\,\,\xi_{\,x}\,=\,\lambda_{1}\xi_{y}$, $\eta_{x}\,=\,\lambda_{2}\,\eta_{y}$ Now,

 $\xi_{x} = \lambda_{1}\xi_{y} - \dots - (6)$ $\xi_{x} - \lambda_{1}\xi_{y} = 0 \text{ being a first order lineat PDE.}$ we've, $\frac{dx}{1} = \frac{dy}{-\lambda_{1}} = \frac{d\xi}{0}$ Therefore, $d\xi = 0$ $\xi = \text{constant}$ $\frac{dx}{1} = \frac{dy}{-\lambda_{1}}$ $\frac{dx}{1} = \frac{dy}{-\lambda_1}$

Let the solution of these equations be given by, $f_1(x,y) = constant$ $f_2(x,y) = constant$ Thus we get, $\xi = f_1(x,y)$ and $\eta = f_2(x,y)$ ------ (8) Now, $A(\xi_x,\xi_v) = R\xi_x^2 + S\xi_x\xi_v + T\xi_v^2$ $= R\lambda_1^2 \xi_v^2 + S\lambda_1 \xi_v \xi_v + T\xi_v^2$ $= \xi_v^2(0)$ [since, λ_1 is a root of $R\lambda^2 + S\lambda + T = 0$] $A(\xi_x,\xi_v)=0$

Similarly,

$$\begin{split} A(\eta_x, \eta_y) &= 0 \quad [since, \lambda_2 \text{ is a root of } R\lambda^2 + S\lambda + T = 0] \\ B^2 &= (S^2 - 4RT) \text{ J} \neq 0 \end{split}$$

Equation (4) reduces to

 $\mathbf{Z}_{\boldsymbol{\xi}\boldsymbol{\eta}} = \mathbf{g} (\boldsymbol{\xi}, \boldsymbol{\eta}, \mathbf{Z}, \mathbf{Z}_{\boldsymbol{\xi}}, \mathbf{Z}_{\boldsymbol{\eta}})$

which is required canonical form for the hyperbolic PDE. Case (ii) :

Then $R\lambda^2 \cdot S^{2} \cdot 4RT = 0$ equal roots. i.e) $\lambda_1 = \lambda_2 = \lambda$ (say) we choose $\xi = f_1(x,y)$, $f_1(x,y) = \text{constant}$ is a solution of $\frac{dy}{dx} + \lambda(x,y) = 0$ where $\frac{A(\xi_x, \xi_y) = 0}{S^2 - 4RT = 0}$ Therefore equation (5) implies, B = 0

However,

 $\begin{array}{l} A(\eta_x,\eta_y) \neq \mathbf{0} \\ \\ \text{Otherwise } \eta \text{ will depend upon `\xi' using } A = B = 0 \text{ in (4),we get} \\ \\ Z_{\eta\eta} = g \; (\; \xi,\eta,Z,Z_{\xi},Z_{\eta}) \\ \\ \text{which is the required canonical form for the parabolic PDE} \\ \\ \\ \text{Case(iii) :} \end{array}$

S² - 4RT < 0

In this case the roots of $R\lambda^2+S\lambda+T=0$ are imaginary. Therefore, ξ and η will be complex. Let $\xi = \alpha + i\beta$ $\eta = \alpha - i\beta$ where, α , β are equal $\alpha = 1/2 (\xi + \eta)$ $\beta = 1/2(\eta - \xi)$ with this transformation we have

 $\mathbf{Z}_{\xi\eta} = \frac{1}{4} \left(\mathbf{Z}_{\alpha\alpha} + \mathbf{Z}_{\beta\beta} \right)$

and proceeding on the similar lines as on case (i) we get,

 $Z_{\alpha\alpha} + Z_{\beta\beta} = \Phi(\alpha, \beta, Z, Z_{\alpha}, Z_{\beta})$ which is the required canonical form for the Elliptical PDE.

Conclusion :

i) If S² - 4RT < 0, then it is Elliptic.
ii) If S² - 4RT = 0, then it is Parabolic.
iii) If S² - 4RT > 0, then it is Hyperbolic.

THANK YOU

http://www.trinitycollegenkl.edu.in/