TRINITY COLLEGE FOR WOMIEN

 NAMAKKALDepartment of Mathematics PARTIAL DIFFERENTIAL EQUATIONS(Part-I) 19PMA08-ODD Semester

Presented by
Dr.R.MALARVIZHI
Assistant Professor \& HOD-PG,
Department of Mathematics http://www.trinitycollegenkl.edu.in/

Rules for finding Complementary Function:

Consider the equation

$$
\begin{equation*}
\left(D^{2}+a_{1} D D^{\prime}+a_{2} D^{\prime 2}\right) Z=0 \tag{1}
\end{equation*}
$$

where,

$$
\mathrm{D}=\frac{\partial}{\partial x} \quad \text { and } \mathrm{D}^{\prime}=\frac{\partial}{\partial y}
$$

the auxilary equation is,
$\mathrm{D}^{2}\left[\left(\frac{D}{D^{\prime}}\right)^{2}+\mathrm{a}_{1}\left(\frac{D}{D j}\right)+\mathrm{a}_{2}\right] \mathrm{Z}=0$
$\left[\left(\frac{D}{D^{\prime}}\right)^{2}+a_{1}\left(\frac{D}{D^{\prime}}\right)+a_{2}\right] Z=0$
Now, let $\mathrm{D} / \mathrm{D}^{\prime}=\mathbf{m}$

$$
\begin{equation*}
m^{2}+a_{1} m+a_{2}=0 \tag{2}
\end{equation*}
$$

m_{1} and m_{2} be the two roots.

Case (i) : $\quad \mathrm{m}_{1} \neq \mathrm{m}_{2}$

The equation 1 can be written as ($\mathrm{D}-\mathrm{m}_{1} \mathrm{D}^{\prime}$) $\left(\mathrm{D}-\mathrm{m}_{2} \mathrm{D}^{\prime}\right) \mathrm{Z}=0$
Now the solution of ($\mathrm{D}-\mathrm{m}_{2} \mathrm{D}^{\prime}$) $\mathrm{Z}=0$ will also be a solution of equation 3

$$
\text { ie) } \begin{gathered}
\left(D-m_{2} D^{\prime}\right) Z=0 \\
P-m_{2} q=0
\end{gathered}
$$

which is of Lagrange's form and auxillary equation is

$$
\frac{d x}{1}=\frac{d y}{-m_{2}}=\frac{d z}{0}
$$

Taking first two factors,
$\frac{d x}{1}=\frac{d y}{-m_{2}}$
$-m_{2} d x=d y$
integrating,
$-m_{2} x=y+c_{1}$
$y+m_{2} x=c_{1}$

Taking 2nd and 3rd factors

$$
\begin{array}{r}
\frac{d y}{-m_{2}}=\frac{d z}{0} \\
0 \mathrm{dy}=-\mathrm{dz} \mathrm{~m}
\end{array}
$$

integrating,
$\mathrm{m}_{2} \mathrm{Z}=\mathrm{c}_{2}$
$\mathrm{Z}=\mathrm{c}_{2}$
$\mathbf{Z}=\mathbf{f}_{\mathbf{2}}\left(\mathrm{y}+\mathrm{m}_{\mathbf{2}} \mathbf{x}\right) \quad$ is a solution of $\left(\mathrm{D}-\mathrm{m}_{2} \mathrm{D}^{\prime}\right) \mathbf{Z}=\mathbf{0}$
Similarly,
Equation (3) will also be satisfied by the solution of
$\left(D-D^{\prime} m_{1}\right) Z=0 \quad b y$,
$Z=f_{1}\left(y+m_{1} x\right)$ where ' f_{1} ' is another arbitrary function.
The complete solution of equation (1) is,

$$
Z=f_{1}\left(y+m_{1} x\right)+f_{2}\left(y+m_{2} x\right)
$$

Case (ii) $\quad \mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}$
Equation (1) can be written as

$$
\begin{gather*}
\left(\mathbf{D}-\mathrm{mD}^{\prime}\right)\left(\mathrm{D}-\mathrm{mD}^{\prime}\right) \mathrm{Z}=0 \tag{5}\\
\left(\mathrm{D}-\mathrm{mD}^{\prime}\right)^{2} \mathbf{Z}=0 \tag{4}
\end{gather*}
$$

Let (D - mD' $) \mathbf{Z}=\mathbf{u}$
(4) $=>\left(\mathrm{D}-\mathrm{mD}^{\prime}\right) \mathrm{u}=0$

It's solution is $\mathbf{u}=\mathbf{f}(\mathbf{y}+\mathrm{mx}) \quad$ [since, case (i)]

$$
\begin{aligned}
&\text { (D } \left.-\mathrm{mD}^{\prime}\right) \mathrm{Z}=\mathrm{u} \text { takes the form } \\
&\left(\mathrm{D}-\mathrm{mD}^{\prime}\right) \mathrm{Z}=\mathbf{f}(\mathrm{y}+\mathrm{mx}) \\
& \mathbf{P}-\mathrm{mq}^{\prime}=\mathbf{f}(\mathrm{y}+\mathrm{mx}) \\
& \Rightarrow \frac{d x}{1}=\frac{d y}{-m}=\frac{d z}{f(y+m x)}
\end{aligned}
$$

Taking 1st two factors,
$\frac{d x}{1}=\frac{d y}{-m}$
$-m d x=d y$
Integrating,

$$
\begin{align*}
& c_{1}-m x=y \\
& y+m x=c_{1} \tag{6}
\end{align*}
$$

Taking 1st and 3rd factors

$$
\mathrm{dx}=\frac{d z}{f(y+m x)}
$$

$f(y+m x) d x=d z$
$f\left(c_{1}\right) d x=d z$
Integrating,

$$
\begin{aligned}
& x f\left(c_{1}\right)=Z+C_{2} \\
& Z=x f\left(C_{1}\right)+C_{2} \quad\left[\text { since, } C_{2} \text { is a constant }\right\} \\
& Z=x f(y+m x)+C_{2}
\end{aligned}
$$

The complete solution of equation is,

$$
Z=f_{1}(y+m x)+x f_{2}(y+m x)
$$

Generalizing the results of case (i) and case (ii) :

(i) If the roots of auxillary equation are $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots . . .$. then

$$
C . F=f_{1}\left(y+m_{1} x\right)+f_{2}\left(y+m_{2} x\right)+f_{2}\left(y+m_{3} x\right)+
$$

where $f_{1}, f_{2}, f_{3}, \ldots .$. are all arbitrary functions.
(ii) If two roots of Auxillary Equation are equal.

$$
\text { ie) } \mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}
$$

Then,
$C . F=f_{1}(y+m x)+x f_{2}\left(y+m_{2} x\right)+f_{3}\left(y+m_{3} x\right)+$
where,
$f_{1}, f_{2}, f_{3}, \ldots .$. are all arbitrary function.
(iii) If three roots of Auxillary equation are equal

$$
\text { ie) } m_{3}=m_{2}=m_{1}
$$

Then,

$$
\begin{aligned}
C . F= & f_{1}(y+m x)+x f_{2}\left(y+m_{2} x\right)+x^{2} f_{3}\left(y+m_{3} x\right)+ \\
& f_{4}(y+m x) \ldots \ldots \ldots . .
\end{aligned}
$$

where $, f_{1}, f_{2}, f_{3}, \ldots .$. are all arbitrary functions and so on.

Examples :

1) $D^{3}-3 D^{2} D^{\prime}+4 D^{\prime} 3=>m^{3}-3 m^{2}+4=0$ $(m+1)\left(m^{2}-4 m+4\right)=0$ $(\mathrm{m}+1)(\mathrm{m}-2)(\mathrm{m}-2)=0$ $\mathrm{m}=-1,2,2$
2) $\mathrm{r}+\mathrm{s}-2 \mathrm{t}=>\mathrm{m}^{2}+\mathrm{m}-2=0$

$$
(m-1)(m+2)=0
$$

m $=1,-2$
3) $\mathrm{D}^{2}-2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime 2}=>\mathrm{m}^{2}-2 \mathrm{~m}+1=0$

$$
(m-1)(m-1)=0
$$

$$
m=1,1
$$

THCNK YOU

http:/ /www.trinitycollegenkl.edu.in/

