

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

REAL ANALYSIS I 21PMA02-ODD Semester

Presented by

Mrs V. GOKILA

Assistant Professor

Department of Mathematics

http://www.trinitycollegenkl.edu.in/

CONTINUITY

> Definition: Limits of Functions

Let X and Y be metric spaces; suppose EC X, f maps E into Y, and p is a limit of E. we write $f(x) \rightarrow q$ as $x \rightarrow p$, or

$$\lim_{x\to p} f(x) = q$$

If there is a point $q \in Y$ with the following property:

For every E>0 there exists a $\delta>0$ such that dv(f(x),q) < E for all points $x \in E$ for each

$$o < dx(x,p) < \delta$$

►Important Results:

- (i) If f has a limit at p, this limit is unique.
- (ii) Let X and Y be metric spaces; suppose EC X, f maps E into Y, and p is a limit of E.

Then
$$\lim_{x\to p} f(x) = q$$
 iff $\lim_{x\to p} f(p_n) = q$ for every sequences $\{p_n\}$ in E such that $p_n \neq p$,

$$\lim_{x\to\infty}p_n=p$$

(iii) Suppose we have two complex functions f and g both defined on E. By f+g we mean the function which assigns to each points x of E, the number f(x) + g(x).

CONTINUOUS FUNCTIONS

> Definition: Continuous

Suppose X and Y are metric spaces, ECX, $p \in E$, and f maps E into Y. Then f is said to be Continuous at p if for every E > 0 there exists a $\delta > 0$ such that

$$d_{\nu}(f(x),f(p)) < \varepsilon$$

for all points xEE for which

$$dx(x,p) < \delta$$

If f is continuous at every at every point of E, then f is said to be continuous on E

> Results:

(i) If X and/ or Y are replaced by the real line, the complex plane, or by the some euclidean space R^k, the distances dx, dv are of course replaced by absolute values (or) by appropriate norms.

(ii) A mapping f of a metric space
 X into a metric space Y is continuous on X iff
 f⁻¹ (V) is open in X for every open set V in Y.
 (iii) Let f and g be complex
 continuous functions on a metric space X, then
 f+g, fg and f/g are continuous on X.

Example:

If x_1,\dots,x_k are the coordinates of the point X $\in \mathbb{R}^k$, the functions φ_i defined by

$$\phi_i(x) = x_i \quad (x \in \mathbb{R}^k)$$
 are continuous on \mathbb{R}^k , since the inequality

Shows that we may take $\delta=E$.

The functions ϕ_i are sometimes called the Coordinate Functions.

DEFINITIONS:

Continuity and Compactness:

A mapping f of a set E into \mathbb{R}^k is said to be Bounded if there is a real number M such that $|f(x)| \le M$ for all $x \in E$.

Uniformly Continuous:

Let f be a mapping of a metric space X into a metric space Y. We say that f is continuous on X if for every $\varepsilon>0$ there exists $\delta>0$ such that $dx(f(p),f(q))<\varepsilon$ for all p and q in X for which $dx(p,q)<\delta$ (depends on ε).

Result:

Every uniformly continuous function is Continuous.

Discontinuous:

If x is a point in the domain of the function f at which f is not continuous, we say that f is discontinuous at x, or that f is discontinuity at x.

If f is defined on an interval or on a segment, we have to define the right hand and the left hand limits of f at x, which we denoted by f(x+) and f(x-) respectively.

Monotonic Functions:

Let f be on (a,b). Then f is said to be Monotonically increasing on (a,b) if a < x < y < b implies $f(x) \le f(y)$.

Let f be on (a,b). Then f is said to be Monotonically decreasing on (a,b) if $a < x < y < b \text{ implies } f(x) \ge f(y)$.

The class of monotonic functions consists of both the increasing and decreasing functions.

Monotonic functions have no discontinuities of the second kind.

THANK YOU

http://www.trinitycollegenkl.edu.in/