

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

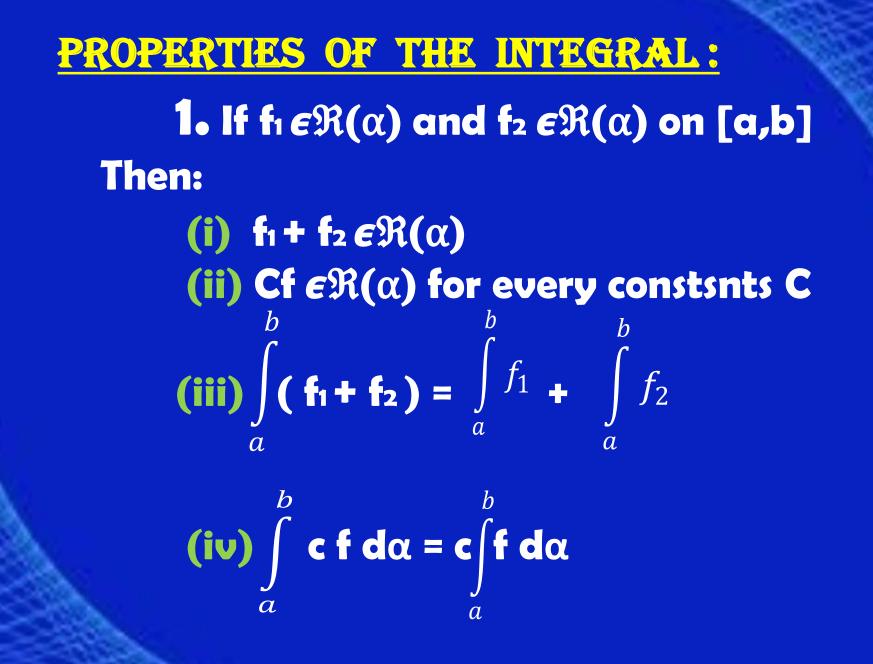
REAL ANALYSIS II 21 PMA06-Even Semester Presented by Mrs V.GOKILA Assistant Professor **Department of Mathematics** http://www.trinitycollegenkl.edu.in/

THE RIEMANN-STIELTJES INTEGRAL **DEFINITIONS:** Refinement: The partition P* is a refinement of P if P^* OP. Given two partitions, P_1 and P_2 , we say that P*is their common refinement if $P^*=P_1 \cup P_2$. **Partition:** Let [a,b] be a given integral. By a partition of P of [a,b], we mean a finite set of points $(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n)$, where $\mathbf{a} = \mathbf{x}_0 \leq \mathbf{x}_1 \leq \ldots \leq \mathbf{x}_{n-1} \leq \mathbf{x}_n = \mathbf{b}$ ie) $P = \{a = x_0 \le x_1 \le \dots \le x_{n-1} \le x_n = b\}$

>Upper And Lower Integrals **Corresponding to of f Over [a,b]:** Let α be a monotonically increasing functions on [a,b] (since $\alpha(a)$ and $\alpha(b)$ are finite, it follows that α is bounded on [a,b]). **Corresponding to each partition** P of [a,b],we write $\Delta \alpha i = \alpha(x_i) - \alpha(x_{i-1})$ It is clear that $\Delta \alpha_i = 0$

Since f is bounded, then there exixts two numbers, m and M such that $m \leq f(x) \leq M$ ($a \leq x \leq b$) Hence for every P, we have $m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a)$ So that the numbers L(P,f) and U(P,f) form a bounded set. This shows that the upper and lower integrals are defined for every bounded function f.

SOME IMPORTANT RESULTS: (a) If P* is a refinement of P, Then (i) $L(P,f,\alpha) \leq L(P^*,f,\alpha)$ (ii) $U(P^*,f,\alpha) \leq U(P,f,\alpha)$ (b) If f is continuous on [a,b], then $f \in \Re(\alpha)$ on [a,b]. (c) Suppose f is bounded on [a,b],f has only finitely many points of discontinuity on [a,b] and α is continuous at every point at which f is discontinuous. Then f $\epsilon \Re(\alpha)$.



2. If $f_1(x) \le f_2(x)$ on [a,b], Then $\int_{0}^{\infty} \mathbf{f}_{1} \, \mathbf{d}\alpha \leq \int_{0}^{\infty} \mathbf{f}_{2} \, \mathbf{d}\alpha$ If $f \in \Re(\alpha)$ on [a,b] and if a < b < c, Then 3. $f \in \Re(\alpha)$ on [a,b] and on [c,b] and $\int \mathbf{f} \, \mathbf{d} \alpha + \int \mathbf{f} \, \mathbf{d} \alpha = \int \mathbf{f} \, \mathbf{d} \alpha$

4. If f ∈ℜ(α) on [a,b] and if |f(x)|≤ M on [a,b], Then

$\left|\int_{a}^{b} \mathbf{f} \, \mathbf{d} \alpha \right| \leq \mathbf{M} \left[\alpha(\mathbf{b}) - \alpha(\mathbf{a}) \right]$

5. If $f \in \Re(\alpha_1)$ and $f \in \Re(\alpha_2)$, Then $f \in \Re(\alpha_1 + \alpha_2)$

$$\int_{a}^{b} \mathbf{f} \, \mathbf{d}(\alpha_1 + \alpha_2) = \int_{a}^{b} \mathbf{f} \, \mathbf{d}(\alpha_1) + \int_{a}^{b} \mathbf{f} \, \mathbf{d}(\alpha_2)$$

If $f \in \Re(\alpha)$ and c is a positive constants, Then $f \in \Re(\alpha)$ and $\int_{\alpha}^{b} f d(c\alpha) = c \int_{\alpha}^{b} f d\alpha$

INTEGRATION OF VECTORS – VALUED FUNCTIONS :

Let $f_1, f_2, ..., f_k$ be real functions on [a,b] and let $f=(f_1, f_2, ..., f_k)$ be the corresponding mapping of [a,b] into \mathbb{R}^k . If α increases monotonically on [a,b], to say that $f \in \Re(\alpha)$ means that $f_i \in \Re(\alpha)$ for j=1,2,...,k. If this is the case, we define

$$\int_{a}^{b} \mathbf{f} \, \mathbf{d} \boldsymbol{\alpha} = \left(\int_{a}^{b} \mathbf{f}_{1} \, \mathbf{d} \boldsymbol{\alpha} , \dots, \int_{a}^{b} \mathbf{f}_{k} \, \mathbf{d} \boldsymbol{\alpha} \right)$$

THANK YOU

http://www.trinitycollegenkl.edu.in/