

TRINITY COLLEGE FOR WOMEN NAMAKKAL

 Department of Mathematics REAL ANALYSIS II 21PMAO6-Even SemesterPresented by
Mrs V.GOKILA
Assistant Professor
Department of Mathematics http://www.trinitycollegenkl.edu.in/

THE RIFNCNN-STHDTHES INHEGRES

DEFINIMONS:

$>$ Refinement:
The partition P^{*} is a refinement of \mathbf{P} if $P \star J P$. Given two partitions, P_{1} and P_{2}, we say that $P * i s$ their common refinement if $P^{*}=P_{1} u P_{2}$. $>$ Partition: Let $[a, b]$ be a given integral. By a partition of P of $[a, b]$, we mean a finite set of points ($x_{0}, x_{1}, \ldots ., x_{n}$), where

$$
0=X_{0} \leq X_{1} \leq \ldots \leq X_{n-1} \leq X_{n}=b
$$

$$
\text { ie) } P=\left\{a=X_{0} \leq x_{1} \leq \ldots \leq X_{n}-1 \leq X_{n}=b\right\}
$$

$>$ Upper And Lower Intecrals
Corresponding to of f Over $[\mathrm{a}, \mathrm{b}]$ b Let α be a monotonically increasing functions on $[\mathbf{a}, \mathrm{b}$] (since $\alpha(\mathbf{a})$ and $\alpha(b)$ are finite, it follows that α is bounded on [a,b]).

Corresponding to each partition
P of [a,b],we write

$$
\begin{gathered}
\Delta \alpha i=\alpha\left(\mathrm{Ki}_{\mathrm{i}}\right)=\alpha\left(\mathrm{Xi}_{\mathrm{i}-1)}\right. \\
\text { It is clear that } \Delta \alpha_{i}=0
\end{gathered}
$$

NOTE:

Since f is bounded, then there exixts two numbers, m and M such that

$$
\begin{gathered}
m \leq f(x) \leq M \quad(a \leq x \leq b) \\
\text { Hence for every } P \text {, we have } \\
m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)
\end{gathered}
$$

So that the numbers $L(P, f)$ and
$\mathbf{U}(P, f)$ form a bounded set. This shows that the upper and lower integrals are defined for every bounded function fo.

SONE IWPORTANT RESULIS:

(a) If P^{\star} is a refinement of P , Then (i) $L(P, f, \alpha) \leq L(P \star, f, \alpha)$ (ii) $U(P \star, f, \alpha) \leq U(P, f, \alpha)$
(b) If f is continuous on $[\mathrm{a}, \mathrm{b}]$, then feR(α) on $[a, b]$.
(c) Suppose f is bounded on $[\mathrm{a}, \mathrm{b}], \mathrm{f}$ has only finitely many points of discontinuity on [a,b] and α is continuous at every point at which f is discontinuous. Then $f \in \Re(\alpha)$.

PROPERTHES OF THE INHRERALL:

 1. If $f_{1} \in \Re(\alpha)$ and $f_{2} \in \Re(\alpha)$ on $[a, b]$ Then:(i) $f_{1}+f_{2} \in R(\alpha)$
(ii) $\underset{b}{ } \in \mathbb{R}(\alpha)$ for every constsnts \mathbf{C}
(iii) $\int_{a}\left(\mathbf{f}_{1}+\mathbf{f}_{2}\right)=\int_{a} f_{1}+\int_{a}^{b} f_{2}$
(iv) $\int_{a}^{b} \mathbf{c f d} d=c \int_{a}^{b} f d \alpha$
2. If $f_{1}(x) \leq f_{2}(x)$ on $[a, b]$, Then

$$
\int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha
$$

3. If $f \in \mathbb{R}(\alpha)$ on $[a, b]$ and if $a<b<c$, Then $f \in \Re(\alpha)$ on $[a, b]$ and on $[c, b]$ and

$$
\int_{a}^{c} \mathrm{f} d \alpha+\int_{c}^{\mathrm{b}} \mathrm{f} d \alpha=\int_{a}^{b} \mathrm{fd} \alpha
$$

4. If $f \in \Re(\alpha)$ on $[a, b]$ and if $|f(x)| \leq M$ on [a, b], Then

$$
\left|\int_{a}^{b} f d \alpha\right| \leq M[\alpha(b)-\alpha(d)]
$$

5. If $f \in \Re\left(\alpha_{1}\right)$ and $f \in R\left(\alpha_{2}\right)$, Then $f \in R\left(\alpha_{1}+\alpha_{2}\right)$

$$
\int_{a}^{b} \mathrm{f} \mathbf{d}\left(\alpha_{1}+\alpha_{2}\right)=\int_{a}^{b} \mathrm{fd}\left(\alpha_{1}\right)+\int_{a}^{b} \mathrm{f} \mathbf{d}\left(\alpha_{2}\right)
$$

If $f \in \Re(\alpha)$ and $\underset{b}{ }$ is a positive constants, Then $f \in \mathscr{R}(\alpha)$ and $\int_{a}^{b} f d(c \alpha)=\mathbf{c} \int_{a}^{b} f d \alpha$

INHEGRETMON OR VECTORS - VALUEDD

FUNCHONS:

Let $f_{1}, f_{2}, \ldots \ldots, f_{k}$ be real functions on $[a, b]$ and let $f=\left(f, f_{2}, \ldots ., f_{k}\right)$ be the corresponding mapping of $[a, b]$ into R^{k}. If α increases monotonically on [a,b], to say that $f \in \mathbb{R}(\alpha)$ means that $f_{f} \in \mathbb{R}(\alpha)$ for $j=$ $1,2, \ldots, k_{0}$. If this is the case, we define

$$
\int_{a}^{b} f \mathrm{~d} \alpha=\left(\int_{a}^{b} \mathrm{f}_{1} \mathrm{~d} \alpha, \ldots ., \int_{a}^{b} \mathrm{f}_{\mathrm{k}} \mathrm{~d} \alpha\right)
$$

THCNK YOU

http:/ /www.trinitycollegenkl.edu.in/

