

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Physics

Solid state physics **19UPHE01-ODD Semester Presented by** P.Sumathi, Assistant Professor, Department of Physics, http://www.trinitycollegenkl.edu.in/

What is a crystal?

□Historic definition before the advent of crystallography A solid with well-defined faces

 Crystallographic definition – A material with a regularly repeating structural motif

□ The strict definition is more vague

Any material that gives a diffraction pattern with sharp peaks

The unit cell

 The repeating structural motif in a crystal is referred to as a unit cell – Unly the size and contents of one unit cell are necessary to describe the entire crystal
Remember to use a righthanded axis system!

Types of Crystal Lattice Two Dimensional Lattice Type: consider two lattice vectors for defining any point. The simplest translational T can be given as

 $T = na_1 + ma_2$

Five distinct type of lattice in two dimensions called Bravais lattice.

Five distinct types of Bravais Lattice:square,

		Axial		Number of
Sr. No.	Crystal System	length of	Inter axial angles	Lattice in the
		Unit Cell		system
1	Cubic	$\alpha = b = c$	$\alpha = \beta = \gamma = 90^4$	3
2	Tetragonal	$\alpha = b \neq c$	$\alpha = \beta = \gamma = 90^4$	2
3	Orthorhombic	a≠b≠c	$\alpha = \beta = \gamma = 90^4$	4
4	Monodinic	a≠b≠c	$\alpha = \beta = 90^{*} \neq \gamma$	2
5	Triclinic	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{4}$	1
6	Trigonal	a = b = c	$\alpha=\beta=\gamma<\!\!120^4,\neq90^4$	1
7	Hexagonal	$a=b\neq c$	$\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$	1

Cubic crystal system • The simplest and easiest structure. • Three types of possible crystal structure under this family named as simple cubic, body centered cubic and face centered cubic.

Simple cubic crystal (sc)

- Lattice points are arranged at each 8 corner of cube.
- At each corner of cube, an atom is shared by 8 nearby unit cells.
- Example Cu, Ag, Au are this types of structure

Body centred cubic(BCC):

Body-centered cubic (BCC) is the name given to a type of atom arrangement found in nature Face centred cubic (FCC):

Face-centered cubic (FCC or cF) is the name given to a type of atom arrangement found in nature

THANK YOU

http://www.trinitycollegenkl.edu.in/