

TRINITY COLLEGE FOR WOMEN

NAMAKKAL

TRIGNOMETRY AND ANALYTICAL GEOMETRY OF 3D

21UMA08 - EVEN SEMESTER

Presented by
Dr B.MOHANA PRIYAA
Assistant professor
Department of Mathematics
http://www.trinitycollegenkl.edu.in/

SPHERE

$>$ DEFINITION
$>$ EQUATION OF A SPHERE
> LENGTH EQUATION OF THE TANGENT
> THE PLANE SECTION OF A SPHERE IS A CIRCLE
> EQUATION OF A CIRCLE ON A SPHERE

DEFINITION :

A sphere is the locus of a point which moves in such a way that its distance from a fixed point is always CONSTANT. The fixed point is called the Centre of the sphere and the constant distance the radius of the sphere.

EQUATION OF A SPHERE :

When the center and radius are given ;

$$
x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2-2 a x-2 b y-2 c z+\left(a^{\wedge} 2+b^{\wedge} 2+c^{\wedge} 2-r^{\wedge} 2\right)=0
$$

here r be the radius of the sphere and $C(a, b, c)$ be the Centre of the sphere then $P(x, y, z)$ be any point of a sphere .

EXAMPLE :

1) Find the equation of the sphere with center ($2,3,1$) and the radius 5 units .

Solution:

We know that the equation of a sphere whose centre is (a, b, c) and radius r is,

$$
\begin{equation*}
(x-a) 2+(y-b) 2+(z-c) 2=r 2 \tag{1}
\end{equation*}
$$

Given : centre is $(2,3,1)$ and radius is 5 units.

Here $a=2, b=-3, c=1$ and $r=5$ Substituting these values in equation (1)
we get $(x-2) 2+(y-(-3)) 2+(z-1) 2=52(x-2) 2+(y+3) 2+(z-1) 2=52$

$$
\begin{gathered}
\text { ie., } x 2+4-4 x+y 2+9+6 y+z 2+1-2 z=25 \\
\text { ie., } x 2+y 2+z 2-4 x+6 y-2 z-11=0
\end{gathered}
$$

Which is the required equation of sphere

GENERAL FORM OF EQUATION OF THE SPHERE :

$$
(x+u)^{\wedge} 2+(y+v)^{\wedge} 2+(z+w)^{\wedge} 2=\left(\sqrt{u^{2}+v^{2}+w^{2}-d}\right)^{\wedge} 2
$$

This equation shows that the equation of sphere whose centre is
$(-\mathrm{u},-\mathrm{v},-\mathrm{w})$ and the radius is $\mathrm{r}=\sqrt{u^{2}+v^{2}+w^{2}-d}$

NOTE :

The equation of sphere centre is $(0,0,0)$ then the radius is written by $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=r^{\wedge} 2$.

Find the centre and radius of the sphere $x 2+y 2+z 2+2 x-4 y-6 z+5=0$.

Solution:
Given : $x 2+y 2+z 2+2 x-4 y-6 z+5=0$
We know that the general equation of a sphere is,

$$
x 2+y 2+z 2+2 u x+2 v y+2 w z+d=0
$$

Here $2 \mathrm{u}=2|2 \mathrm{v}=-4| 2 \mathrm{w}=-6 \mid \mathrm{d}=5$
ie., $u=1|\quad \mathrm{v}=-2| \mathrm{w}=-3 \mid$
\therefore Centre : $(-u,-v,-w)=(-1,2,3)$
Radius $=\mathrm{V}(\mathrm{u} 2+\mathrm{v} 2+\mathrm{w} 2-\mathrm{d})$

$$
\begin{aligned}
& =V((-1) 2+22+32-5) \\
& =V(1+4+9-5) \\
& =V \ln
\end{aligned}
$$

Hence the centre of the given sphere is $(-1,2,3)$ and radius is 3 units

LENGTH EQUATION OF THE TANGENT :

We find the length of the tangent from the point (x, y, z) to the sphere is $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 u x+2 v y+2 w z+d=0$.

Then the length of the tangent is of the form

$$
\text { PT }=\sqrt{X 1^{\wedge} 2+y 1^{\wedge} 2+z 1^{\wedge} 2+2 u x 1+2 v y 1+2 w z 1+d}
$$

EXAMPLE :

Find the equation of the tangent plane to the sphere $X^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2-4 x+2 y-6 z+5=0$ Which is parallel to the plane $3 x+2 y-2 z=0$.

THE PLANE SECTION OF A SPHERE IS A CIRCLE

GREAT CIRCLE :

If the plane passing through the centre of the sphere is known as a great circle .

In this case ,the radius of the circle is equal to the radius of the sphere

SMALL CIRCLE :

The plane section of plane not passing through the centre of the Sphere are called small circle .

EQUATION OF A CIRCLE ON A SPHERE :

The section of a sphere is a circle ,therefore the circle can be represented by two equations ,are being of a sphere and other of a plane

This equation $X^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 u x+2 v y+2 w z+d=0, \mid x+m y+n z=P$ taken together represented a circle .

EXAMPLE :

Find the equation of the sphere having the circle, $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2-2 x+4 y-6 z+7=0$, $2 x-y+2 z=5$ for break circle .

EQUATION OF A SPHERE PASSING THROUGH A GIVEN CIRCLE :

The equation ,

$$
x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 u x+2 v y+2 w z+d+k(\mid x+m y+n z-p)=0
$$

In which k is any constant represents a sphere.moreover the equation is satisfied by the co-ordinates of any point which is common to the sphere which passes through the circle .

$$
\begin{gathered}
x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2+2 u x+2 v y+2 w z+d=0 \\
\mid x+m y+n z=P
\end{gathered}
$$

EXAMPLE:

Find the equation of the sphere which passes through $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2-2 x-4 y=0$, $x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.

THANK YOU : M

http://www.triitycollegennkl.edu.in/

