

21UMA08 - EVEN SEMESTER

Presented by

Dr B.MOHANA PRIYAA Assistant professor Department of Mathematics http://www.trinitycollegenkl.edu.in/

DEFINITION

EQUATION OF A SPHERE

> LENGTH EQUATION OF THE TANGENT

> THE PLANE SECTION OF A SPHERE IS A CIRCLE

EQUATION OF A CIRCLE ON A SPHERE

A **sphere** is the locus of a point which moves in such a way that its distance from a fixed point is always CONSTANT. The fixed point is called the **Centre of the sphere** and the constant distance the **radius of the sphere**.

When the center and radius are given ;

$x^2+y^2+z^2-2ax-2by-2cz+(a^2+b^2+c^2-r^2) = 0$

here r be the radius of the sphere and C (a,b,c) be the Centre of the sphere then P (x,y,z) be any point of a sphere .

EXAMPLE :

1) Find the equation of the sphere with center (2,3,1) and the radius 5 units .

Solution:

We know that the equation of a sphere whose centre is (a,b,c) and radius r is,

(x-a) 2 + (y-b) 2 + (z-c) 2 = r 2 ------(1)

Given : centre is (2, 3, 1) and radius is 5 units.

Here a=2, b=-3, c=1 and r=5 Substituting these values in equation (1)

we get (x-2) 2 + (y-(-3)) 2 + (z-1) 2 = 5 2 (x-2) 2 + (y+3) 2 + (z-1) 2 = 5 2

ie., x 2 +4-4x+y2 +9+6y+z2 +1-2z=25

ie., x 2 +y2 +z2 -4x+6y-2z-11=0.

Which is the required equation of sphere

$$(x+u)^2 + (y+v)^2 + (z+w)^2 = (\sqrt{u^2 + v^2 + w^2 - d})^2$$

This equation shows that the equation of sphere whose centre is

(-u,-v,-w) and the radius is $r = \sqrt{u^2 + v^2 + w^2 - d}$.

NOTE :

The equation of sphere centre is (0,0,0) then the radius is written by

 $x^2+y^2+z^2 = r^2$.

EXAMPLE :

Find the centre and radius of the sphere x2 +y2 +z2 +2x-4y-6z+5=0.

Solution:

```
Given : x2 +y2 +z2 +2x-4y-6z+5=0
```

We know that the general equation of a sphere is, x $2 + y^2 + z^2 + 2ux + 2vy + 2wz + d=0$.

```
Here 2u=2 | 2v=-4 | 2w=-6 | d=5
ie., u=1 | v=-2 | w=-3 |
\therefore Centre : (-u,-v,-w)=(-1,2,3)
```

Radius = $\sqrt{(u^2 + v^2 + w^2 - d)}$ = $\sqrt{((-1)^2 + 2^2 + 3^2 - 5)}$ = $\sqrt{(1+4+9-5)}$ = $\sqrt{9}$ ntre of the given sphere is (-1.2.3) and

Hence the centre of the given sphere is (-1,2,3) and radius is 3 units .

We find the length of the tangent from the point (x,y,z) to the sphere is $X^2+y^2+z^2+2ux+2vy+2wz+d = 0$.

Then the length of the tangent is of the form

 $PT = \sqrt{X1^2 + y1^2 + z1^2 + 2ux1 + 2vy1 + 2wz1 + d}$

EXAMPLE :

Find the equation of the tangent plane to the sphere $X^2+y^2+z^2-4x+2y-6z+5=0$ Which is parallel to the plane 3x+2y-2z = 0.

THE PLANE SECTION OF A SPHERE IS A CIRCLE :

GREAT CIRCLE :

If the plane passing through the centre of the sphere is known as a great circle.
 In this case ,the radius of the circle is equal to the radius of the sphere

SMALL CIRCLE :

The plane section of plane not passing through the centre of the Sphere are called **small circle**.

EQUATION OF A CIRCLE ON A SPHERE :

The section of a sphere is a circle ,therefore the circle can be represented by two equations ,are being of a sphere and other of a plane

This equation $X^2+y^2+z^2+2ux+2vy+2wz+d = 0$, Ix+my+nz = P taken together represented a circle.

EXAMPLE :

Find the equation of the sphere having the circle, $X^2+y^2+z^2-2x+4y-6z+7=0$, 2x-y+2z=5 for break circle .

EQUATION OF A SPHERE PASSING THROUGH A GIVEN CIRCLE :

The equation ,

 $X^2+y^2+z^2+2ux+2vy+2wz+d+k(lx+my+nz-p) = 0$

In which k is any constant represents a sphere moreover the equation is satisfied by the co-ordinates of any point which is common to the sphere which passes through the circle .

 $X^{2}+y^{2}+z^{2}+2ux+2vy+2wz+d = 0$ Ix+my+nz = P

EXAMPLE :

Find the equation of the sphere which passes through $X^2+y^2+z^2-2x-4y=0$, X+2y+3z=8 and touches the plane 4x+3y=25.

http://www.triitycollegennkl.edu.in/