TRINITY COLLEGE FOR WOMIEN NAMAKKAL

Department of Mathematics
TRIGONOMETRY AND

21UMA08-Even Semester

Presented by
Dr.B.MOHANA PRIYAA
Assistant Professor
Department of Mathematics
http://www.trinitycollegenkl.edu.in/

CONE

DEFINITION

CONE :

Cone is a ruled surface generated by a moving straight line which passes through a fixed point and intersect a fixed curve.

The fixed point is called the vertex and the fixed curve is called the guiding curve.

Since a generator is a straight line ; it extends on either side infinitely as such a cone is a infinite surface being symmetrical about its vertex.

EQUATION OF A CONE :

There are two types of the equation of a cone .

- Cone with its vertex and the origin \mathbf{O}.
- Cone with its vertex at $A(\alpha, \beta, \gamma)$.

EXAMPLE:

Find the equation of the cone whose vertex is the point $(1,1,0)$ and whose guiding curve is $x^{2}+z^{2}=4, y=0$.

Let $Q\left(x_{1}, y_{1}, z_{1}\right)$ be a point on the guiding curve $x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2}=4$,$y=0$.

Let A be a vertex and $p\left(x_{0}, y_{0}, z_{0}\right)$ any point on the generated AQ. Let Q divide AP in the ratio $\mathrm{k}: 1-\mathrm{k}$ then ,

$$
\begin{aligned}
& x_{1}=K x_{0}+(1-k) \alpha \\
& y_{1}=k y_{0}+(1-k) \beta \\
& z_{1}=K z_{0}+(1-k) \gamma
\end{aligned}
$$

The point $(1,1,0)$

$$
\begin{array}{ll}
x_{1}=K x_{0}+(1-k) 1 & \\
y_{1}=k y_{0}+(1-k) 1 & \\
z_{1}=K z_{0}+(1-k) 0 & \\
x_{1}=1+K\left(x_{0}-1\right) & \Rightarrow 1 \\
y_{1}=1+k\left(y_{0}-1\right) & \Rightarrow 2 \\
z_{1}=K z_{0} & \Rightarrow 3
\end{array}
$$

$$
\text { Put } \mathrm{y}=0 \text { in } \Rightarrow 2
$$

$$
0=1+k\left(y_{0}-1\right)
$$

$$
-1 / y_{0}-1=k
$$

Sub k value in x and z

$$
\begin{aligned}
& x_{1}=1+\left(-1 / y_{0}-1\right)\left(x_{0}-1\right) \\
& x_{1}=y_{0}-1-x_{0}+1 / y_{0}-1 \\
& x_{1}=y_{0}-x_{0} / y_{0}-1 \\
& z_{1}=-z_{0} / y_{0}-1
\end{aligned}
$$

Sub x and z values in guiding curve

$$
\begin{aligned}
& x_{1}^{2}+z_{1}^{2}=4 \\
&\left(y_{0}-x_{0} / y_{0}-1\right)^{2}+\left(-z_{0} / y_{0}-1\right)^{2}=4 \\
&\left(y_{0}-x_{0}\right)^{2}+\left(z_{0}\right)^{2} /\left(y_{0}-1\right)^{2}=4 \\
&\left(y_{0}-x_{0}\right)^{2}+\left(z_{0}\right)^{2}=4\left(y_{0}-1\right)^{2} \\
& y_{0}^{2}+x_{0}^{2}-2 y_{0} x_{0}+z_{0}^{2}=4\left(y_{0}-1\right)^{2} \\
& y_{0}^{2}+x_{0}^{2}-2 y_{0} x_{0}+z_{0}^{2}=4\left(y_{0}^{2}+1-2 y_{0}\right) \\
& x_{0}^{2}+y_{0}^{2}-2 y_{0} x_{0}+z_{0}^{2}-4 y_{0}^{2}-4+8 y_{0}=0 \\
& x_{0}^{2}-3 y_{0}{ }^{2}+z_{0}^{2}-2 x_{0} y_{0}+8 y_{0}-4=0
\end{aligned}
$$

Replace x_{0}, y_{0}, z_{0} be x, y, z

$$
x^{2}-3 y^{2}+z^{2}-2 x y+8 y-4=0
$$

CONE WHOSE VERTEX IS AT THE ORIGIN

DEFINITION :

HOMOGENEOUS FUNCTION .

An equation $f(x, y, z)=0$ is said to be homogeneous in (x, y, z) degree nit.

If $(t x, t y, t z)=t^{n} f(x, y, z)$ for all real values of t.
EXAMPLE :
Consider $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h y x=0$ is a homogeneous equation.

$$
f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h y x=0
$$

than

$$
\begin{aligned}
& \text { if }(t x, t y, t z)=a t^{2} x^{2}+b t^{2} y^{2}+c t^{2} z^{2}+2 f t y t z+2 g t z t x+2 h t x t y=0 \\
& t^{2}\left(a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y\right)=0 \\
& t^{2} f(x, y, z)=0 \\
& f(t x, t y, t z)=t^{2} f(x, y, z)=0 \text { for all real value of } t .
\end{aligned}
$$

QUADRIC CONE WITH VERTEX AT THE ORIGIN .

- Quadric cone is a cone whose equation is second degree cone.
- If the vertex of a cone is at the origin than its equation of homogeneous.
- Hence the equation of a quadric cone with its vertex is of the form.

EXAMPLE :

$$
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g x z+2 h x y
$$

To show that the equation of a quadric cone passing through the x, y, z axis of the form fyz+gzx+hxy = 0 .

Consider the second degree homogeneous equation of a cone.

$$
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h y x=0
$$

Since the vertex of the cone is the origin.
Now the cone passes through the x axis.
The point is $(1,0,0)$
This point satisties the equation 1

$$
a=0
$$

It the cone passes through the y and z axes.

$$
\mathrm{b}=0 \text { and } \mathrm{c}=0
$$

Sub these value in 1 we have

$$
\begin{array}{r}
2(f y z+g z x+h x y=0 \\
\text { fyz+gzx+hxy }=0 \\
\text { Hence proved. }
\end{array}
$$

GENERAL QUADRIC CONE

DEFINITION :

QUADRIC CONE

- The quadric cone is the simplest quadric ruled surface , i.e., it is a surface of degree 2 that contains infinitely many lines.
- I fact, the vertex of the cone is at the origin to a point of the surface lies on yhe cone.

EXAMPLE

To show that if the quadric cone has $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g x z+2 h x y=$ 0 has three mutually perpendicular generator then $a+b+c=0$.

Consider the equation of the quadric cone is,

$$
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g x z+2 h x y=0 \quad \Rightarrow 1
$$

Let g_{1}, g_{2}, g_{3} be the three mutually perpendicular generator of the
cone.
Then, $g \square$ is perpendicular to the plane formed by g_{1} and g_{2} is

$$
l x+m y+n z=0 \quad \Rightarrow 2
$$

Now, g_{1} and g_{2} are the line of intersection of the cone and this

If λ, μ, γ are the direction ratio of g_{1} or g_{2} then we have ,

$$
a \lambda^{2}+b \mu^{2}+c^{2}+2 f \mu \gamma+2 g \gamma \lambda+2 h \lambda \mu=0 \quad \Rightarrow 3
$$

And

$$
I \lambda+m \mu+n \gamma=0 \quad \Rightarrow 4
$$

Solve the two equation we obtain the equation in λ / γ.

$$
\text { ie },(\lambda / \gamma)^{2}\left(a m^{2}+b l^{2}-2 h \mid m\right)+2(\lambda / \gamma)\left(c l^{2}+a n^{2}-2 g n l\right)+\left(b n^{2}+\mathrm{cm}^{2}-2 f m n\right)=0
$$

Whose roots are λ_{1} / γ_{1} and λ_{2} / γ_{2}. where $\lambda_{1}, \mu_{1}, \gamma_{1}$ and $\lambda_{2}, \mu_{2}, \gamma_{2}$ are the direction ratios of g_{1} and g_{2}.

Hence the product of the root is

$$
\lambda_{1} / \gamma_{1} \times \lambda_{2} / \gamma_{2}=b n^{2}+\mathrm{cm}^{2}-2 \mathrm{fmn} / \mathrm{am}^{2}+\left.\mathrm{b}\right|^{2}-2 \mathrm{hlm} \quad \Rightarrow 5
$$

and

$$
\mu_{1} / \gamma_{1} \times \mu_{2} / \gamma_{2}=c l^{2}+a n^{2}-2 g n l / a m^{2}+\left.b\right|^{2}-2 h l m \quad \Rightarrow 6
$$

Now g_{1} and g_{2} are perpendicular to each other, if $\lambda_{1} \lambda_{2}+\mu_{1} \mu_{2}+\gamma_{1} \gamma_{2}=0$.

From 5 and 6

$$
\left(b n^{2}+c m^{2}-2 f m n\right)+\left(\left.c\right|^{2}+a n^{2}-2 g n l\right)+\left(a m^{2}+\left.b\right|^{2}-2 h l m\right) \quad \Rightarrow 7
$$

But since $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are the directions cosines of the generator of the cone .

$$
\mathrm{al}^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}+2 \mathrm{fmn}+2 \mathrm{gnl}+2 \mathrm{hlm}=0 \quad \Rightarrow 8
$$

From $7+8$

$$
\begin{aligned}
& b n^{2}+c m^{2}+c l^{2}+a n^{2}+a m^{2}+\left.b\right|^{2}+\left.a\right|^{2}+b m^{2}+c n^{2}=0 \\
& \div b y 8 \\
& \Rightarrow(a+b+c)\left(l^{2}+m^{2}+n^{2}\right)=0 \\
& \Rightarrow a+b+c \quad=0
\end{aligned}
$$

Hence the proof.

THANK YOU

http:/ /www.trinitycollegenkl.edu.in/

