

TRINITY COLLEGE FOR WOMIEN NAMAKKAL

Department of Mathematics

NUMBER THEORY
 21UMA05 - Odd Semester

Topic: Euclid's Division Algorithm

Presented by
A. Thenmozhi

Assistant Professor
Department of Mathematics
http://www.trinitycollegenkl.edu.in/

Euclid's Division Algorithm

* For two positive integers a \& b where $a>b$, they can be expressed as

$$
a=(b * q)+r
$$

* where $0 \leq r<b$ and $q \in Z$. If " $r=0$ " then "b" is the HCF/GCD of "a \& b"
* If " $\mathrm{r} \neq 0$ " then apply Euclid's division lemma to b and r .

$$
b=\left(r^{*} m\right)+n
$$

* For some integers m and $n, 0 \leq n<r$
* Continue this process till the remainder is
zero.

Dividend $=$ Divisor \times Quotient + Remainder

1					
$9 1 \longdiv { 1 3 0 }$			130	911	39
91	2				
39	91	3	91	392	13
	78				
	13	39	39		0
		39			
		0			

respectively.
Solution:
since, 2623 and 2011 when divided leaves
remainder 5 and 9.
we have to find HCF of $2623-5=2618$.

And HCF of2011-9=2002, so we consider the numbers 2618 and 2002.

Now applying Euclid's lemma to 2618 and

$$
\begin{gathered}
2002 \text { we get, } \\
2618=2002^{*} 1+616
\end{gathered}
$$

As $\mathrm{r} \neq 0$ we again apply Eulid's lemma to 2002 and 616.
we have $2002=616^{*} 3+154$ as wee that $r \neq 0$.

Applying Eulid's lemma again to 6156 and 154 we get,

$$
616=154 * 4+0
$$

Now, Remainder (r)=0
Hence, according to the algorithm the divisor=HCF/GCD

Therefore,

$154=\mathrm{HCF}$ of 2618 and 2002.

Hence,
the required number is 154 .

Revision:

1. Arranging the terms in the given equation as per the Euclid's Division

Lemma general equation

$$
a=b * q+r
$$

2. Identification of the Dividend,

Divisor, Quotient and Remainder.
3. Any positive integer can be represented
as ' $2 q^{\prime}$ or ' $2 q+1$ '.

THANK YOU

http:/ /www.trinitycollegenkl.edu.in/

